東京大学
東京大学大学院 新領域創成科学研究科 複雑理工学専攻
English

能瀬研究室 - 神経回路の設計図と動作原理を探る -

項目

Original Papers

  • Kim B, Gellert HR, Church SH, Suvorov A, Anderson SS, Barmina O, Beskid SG, Comeault AA, Crown KN, Diamond SE, Dorus S, Fujichika T, Hemker JA, Hrcek J, Kankare M, Katoh T, Magnacca KN, Martin RA, Matsunaga T, Medeiros MJ, Miller DE, Pitnick S, Simoni S, Steenwinkel TE, Schiffer M, Syed ZA, Takahashi A, Wei KHC, Yokoyama T, Eisen MB, Kopp A, Matute D, Obbard DJ, O’Grady PM, Price DK, Toda MJ, Werner T, Petrov DA.(2023)
    Single-fly assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life
    bioRxiv doi: 10.1101/2023.10.02.560517

    Takagi S, Takano S, Hashimoto Y, Morise S, Zeng X, Nose A. (2023)
    Segment-specific axon guidance by Wnt/Fz signaling diversifies motor commands in Drosophila larvae
    bioRxiv doi: 10.1101/2023.09.05.555126

    Pelaez JN, Gloss AD, Goldman-Huertas B, Kim B, Lapoint RT, Pimentel-Solorio G, Verster KI, Aguilar JM, Dittrich ACN, Singhal M, Suzuki HC, Matsunaga T, Armstrong EE, Charboneau JLM, Groen SC, Hembry DH, Ochoa CJ, O’Connor TK, Prost S, Zaaijer S, Nabity PD, Wang J, Rodas E, Liang I, Whiteman NK. (2023)
    Evolution of chemosensory and detoxification gene families across herbivorous Drosophilidae
    G3 13(8) doi: 10.1101/2023.03.16.532987

    Liu Y, Hasegawa E, Nose A, Zwart FM, Kohsaka H. (2023)
    Synchronous multi-segmental activity between metachronal waves controls locomotion speed in Drosophila larvae
    eLife doi: 10.7554/eLife.83328

    Sun X, Nose A, Kohsaka H. (2023)
    A vacuum-actuated soft robot inspired by Drosophila larvae to study kinetics of crawling behaviour
    PLoS One 18(4):e0283316 doi: 10.1371/journal.pone.0283316

    Park J, Chung YR, Nose A. (2022)
    Comparative analysis of high- and low-level deep learning approaches in microsatellite instability prediction
    Sci Rep. 12(1):12218 doi: 10.1038/s41598-022-16283-3

    Fukumasu K, Nose A, Kohsaka H. (2022)
    Extraction of bouton-like structures from neuropil calcium imaging data
    Neural Networks 156:218-238 doi: 10.1016/j.neunet.2022.09.033

    Giachello CNG, Hunter I, Pettini T, Coulson B, Knufer A, Cachero S, Winding M, Arzan Zarin A, Kohsaka H, Fan YN, Nose A, Landgraf M, Baines RA. (2022)
    Electrophysiological validation of monosynaptic connectivity between premotor interneurons and the aCC motoneuron in the Drosophila larval CNS
    J Neurosci. 42(35):6724-6738 doi: 10.1523/JNEUROSCI.2463-21.2022

    Sun X, Nose A, Kohsaka H. (2022)
    A Drosophila larvae-inspired vacuum-actuated soft robot
    bioRxiv doi: 10.1101/2022.05.08.491074

    Liu Y, Hasegawa E, Nose A, Zwart MF, Kohsaka H. (2022)
    Synchronous multi-segmental activity between metachronal waves controls locomotion speed in Drosophila
    bioRxiv doi: 10.1101/2022.09.08.507222

    Sun X, Liu Y, Liu C, Mayumi K, Ito K, Nose A, Kohsaka H. (2022)
    A neuromechanical model for Drosophila larval crawling based on physical measurements
    BMC Biology 20, Article number: 130 doi: 10.1186/s12915-022-01336-w

    Zeng X, Komanome Y, Kawasaki T, Inada K, Jonaitis J, Pulver SR, Kazama H, Nose A. (2021)
    An electrically coupled pioneer circuit enables motor development via proprioceptive feedback in Drosophila embryos
    Current Biology 31, 5327-5340.e5 doi: 10.1016/j.cub.2021.10.005
    >Introduced by a "Dispatch" article of the journal.

    Matsuo Y, Nose A, Kohsaka H. (2021)
    Interspecies variation of larval locomotion kinematics in the genus Drosophila and its relation to habitat temperature
    BMC Biology 19:176 doi: 10.1186/s12915-021-01110-4

    Hiramoto A, Jonaitis J, Niki S, Kohsaka H, Fetter RD, Cardona A, Pulver SR, Nose A. (2021)
    Regulation of coordinated muscular relaxation by a pattern-regulating intersegmental circuit
    Nat. Commun. 12:2943 doi: 10.1038/s41467-021-23273-y

    Sun X, Liu Y, Liu C, Mayumi K, Ito K, Nose A, Kohsaka H. (2020)
    A neuromechanical model and kinematic analyses for Drosophila larval crawling based on physical measurements.
    bioRxiv doi: 10.1101/2020.07.17.208611

    Giachello CNG, Zarin AA, Kohsaka H, Fan YN, Nose A, Landgraf M, Baines RA. (2020)
    Electrophysiological validation of premotor interneurons monosynaptically connected to the aCC motoneuron in the Drosophila larval CNS
    bioRxiv doi: doi: 10.1101/2020.06.17.156430

    *Kohsaka H, Zwart M, Fushiki A, Fetter R, Truman J, Cardona A, *Nose A. (2019)
    Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae
    Nat. Commun. 10:2654 doi: 10.1038/s41467-019-10695-y [PubMed]

    Yoon Y, Park J, Taniguchi A, Kohsaka H, Nakae K, Nonaka S, Ishii S, Nose A. (2019)
    System level analysis of motor-related neural activities in larval Drosophila
    J Neurogenet. 33:179-189 doi: 10.1080/01677063.2019.1605365 [PubMed]

    Park J, Kondo S, Tanimoto H, Kohsaka H, Nose A. (2018)
    Data-driven analysis of motor activity implicates 5-HT2A neurons in backward locomotion of larval Drosophila
    Sci Rep. 8:10307 doi: 10.1038/s41598-018-28680-8 [PubMed]

    Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H, Fetter RD, Truman JW, Zlatic M, Cardona A, *Nose A. (2017)
    Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila
    Neuron 17 pii: S0896-6273(17)31022-X [PubMed]

    Matsunaga T, Kohsaka H, *Nose A. (2017)
    Gap junction-mediated signaling from motor neurons regulates motor generation in the central circuits of larval Drosophila
    J Neurosci. 37:2045-2060 [PubMed]
    >Selected as a featured article in this issue of the journal.

    Hasegawa E, Truman JW, *Nose A. (2016)
    Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion
    Sci Rep. 6:30806 [PubMed]

    Fushiki A, Zwart MF, Kohsaka H, Fetter RD, *Cardona A and *Nose A. (2016)
    A circuit mechanism for the propagation of waves of muscle contraction in Drosophila
    eLife 10.7554/eLife.13253 [PubMed]
    >Introduced by an "INSIGHT" article of the journal.

    Thoma V, Knapek S, Arai S, Hartl M, Kohsaka H, Sirigrivatanawong P, Abe A, Hashimoto K, Tanimoto H. (2016)
    Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila
    Nat Commun. 7:10678 [PubMed]

    Itakura Y, Kohsaka H, Ohyama T, Zlatic M, *Pulver SR and *Nose A. (2015)
    Identification of inhibitory premotor interneurons activated at a late phase in a motor cycle during Drosophila larval locomotion
    PLoS One 3, e0136660 [PubMed]

    Kohsaka H, Takasu E, Morimoto T and *Nose A. (2014)
    A Group of Segmental Premotor Interneurons Regulates the Speed of Axial Locomotion in Drosophila Larvae
    Current Biology 24, 2643-2651 [PubMed]

    Okusawa S, Kohsaka H and *Nose A. (2014)
    Serotonin and downstream leucokinin neurons modulate larval turning behavior in Drosophila
    J Neurosci. 34, 2544-2558 [PubMed]

    Fushiki A, Kohsaka H and *Nose A. (2013)
    Role of sensory experience in functional development of Drosophila motor circuits.
    PLoS One 8, e62199 [PubMed]

    Matsunaga T, Fushiki A, Nose A and *Kohsaka H. (2013)
    Optogenetic perturbation of neural activity with laser illumination in semi-intact Drosophila larvae in motion
    J Vis Exp. 4, e50513 [PubMed]

    Fukui A, Inaki M, Tonoe G, Hamatani H, Homma M, Morimoto T, Aburatani H and *Nose A. (2012)
    Lola regulates glutamate receptor expression at the Drosophila neuromuscular junction.
    Biology Open 1, 362-375[PubMed]

    Inada K, Kohsaka H, Takasu E, Matsunaga T and *Nose A. (2011)
    Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin
    PLoS One 6, e29019[PubMed]

    Shakiryanova D, Morimoto T, Zhou C, Chouhan AK, Sigrist SJ, Nose A, Macleod GT, Deitcher DL and *Levitan ES.(2011)
    Differential Control of Presynaptic CaMKII Activation and Translocation to Active Zones.
    J Neurosci. 31, 9093-9100[PubMed]

    Inaki M, Shinza-Kameda M, Ismat A, Frasch M and *Nose A. (2010)
    Drosophila Tey represses transcription of the repulsive cue Toll and generates neuromuscular target specificity
    Development 137, 2139-2146 [PubMed]

    *Morimoto T, Nobechi M, Komatsu A, Miyakawa H, Nose A. (2010)
    Subunit-specific and homeostatic regulation of glutamate receptor localization by CaMKII in Drosophila neuromuscular junctions
    Neuroscience 165, 1284-1292 [PubMed]

    Kohsaka H and Nose A. (2009)
    Target recognition at the tips of postsynaptic filopodia: accumulation and function of Capricious
    Development 136, 1127-1135 [PubMed]

    Kazama H, Ichikawa A, Kohsaka H, Morimoto-Tanifuji T and Nose A. (2008)
    Innervation and activity dependent dynamics of postsynaptic oxidative metabolism
    Neuroscience 152, 40-49 [PubMed]

    Kohsaka H., Takasu, E. and Nose A. (2007)
    In vivo induction of postsynaptic molecular assembly by the cell adhesion moledule Fasciclin2
    J. Cell Biol. 179, 1289-1300 [PubMed]

    Inaki M., Yoshikawa S., Thomas J. B., Aburatani H. and Nose A. (2007)
    Wnt4 is a local repulsive cue that determines synaptic target specificity
    Current biology 17, 1574-1579 [PubMed]

    Kazama H, Nose A and Morimoto-Tanifuji T. (2007)
    Synaptic components necessary for retrograde signaling triggered by calcium/calmodulin-dependent protein kinase II during synaptogenesis
    Neuroscience 145, 1007-1015 [PubMed]

    過去の論文はこちら(1992 - 2006)

Reviews

  • Kohsaka H (2023)
    Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion
    Frontiers in Neural Circuits 17 doi: 10.3389/fncir.2023.1175899

    高坂洋史 (2022)
    複数の運動出力パターンを生み出す神経ネットワーク構造
    月刊細胞 54(2):47-49

    Kohsaka H, Nose A (2021)
    Optogenetics in Drosophila
    "Optogenetics 2nd edition", Springer Verlag, pp309-320

    Kohsaka H, Nose A (2020)
    Interneurons for Specific Animal Behavior
    Cytologia 85(1):1-2 doi: 10.1508/cytologia.85.1

    高坂洋史 (2019)
    同一の神経回路網が相異なる運動出力を生み出すネットワーク機構
    月刊細胞 51(14):31-33

    高坂洋史 (2018)
    ショウジョウバエ幼虫を動かす神経回路機構
    比較生理生化学 35(2):93-99

    Takagi S, Nose A (2018)
    Circuit architecture for somatotopic action selection in invertebrates.
    Neurosci Res. 2019 Mar;140:37-42. doi: 10.1016/j.neures.2018.08.008. Epub 2018 Aug 18.

    髙木優、能瀬聡直 (2018)
    ショウジョウバエ幼虫の行動制御回路
    月刊 臨床神経科学36(8):903-906 中外医学社

    *Kohsaka H., Guertin P.A., Nose A.(2017)
    Neural circuits underlying fly larval locomotion.
    Current Pharm. Design. 23:1-12

    能瀬聡直 (2017)
    光によるショウジョウバエ中枢回路の機能解剖
    生体の科学 68(5): 478-479

    Kohsaka H and Nose A (2015)
    Optogenetics in Drosophila
    "Optogenetics", Springer Verlag, pp199-212

    能瀬聡直 (2014)
    ショウジョウバエ幼虫を用いて定型運動の制御機構を探る
    細胞工学 33, 249-254

    能瀬聡直 (2013)
    文部科学省科学研究費・新学術領域研究
    「メゾスコピック神経回路から探る脳の情報処理基盤」がめざすもの
    生体の科学 64(1), 80-87

    高坂洋史、能瀬聡直 (2013)
    ショウジョウバエを用いたオプトジェネティクス
    「オプトジェネティクス-光工学と遺伝学による行動制御技術の最前線」NTS(分担執筆)

    Nose A. (2012)
    Generation of neuromuscular specificity in Drosophila: novel mechanisms revealed by new technologies.
    Frontiers in Molecular Neuroscience 5, 62[PubMed]

    Kohsaka H, Okusawa S, Itakura Y, Fushiki A and Nose A. (2012)
    Development of larval motor circuits in Drosophila.
    Develop.Growth Differ. 54, 408-419[PubMed]

    Lu,B, Wang, K.H and Nose, A. (2009)
    Molecular mechanisms underlying neural circuit formation.
    Curr. Opin. Neurobiol. 19, 162-167 [PubMed]

    能瀬聡直 (2009)
    ショウジョウバエで神経回路の形成過程を探る、
    in 研究をささえるモデル生物、 吉川寛、堀寛編、化学同人、120-121

    Nose, A. (2008)
    Synaptic Specificity.
    In “Encyclopedia of Neuroscience”, Springer Berlin Heidelberg

    高坂洋史、能瀬聡直 (2008)
    生体内におけるシナプス形成過程の可視化
    Medical Technology 36, 1114-1115.

    高坂洋史、能瀬聡直 (2008)
    シナプス形成過程の生体内可視化
    実験医学 26, 1985-1992.

ページ先頭へ戻る

LINKS

  • 東京大学(別窓)

  • 新領域(別窓)

  • 理学部(別窓)

  • メゾ神経回路(別窓)
.
Copyright c 2011 Nose Laboratory. All rights reserved.